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ABSTRACT 

The generalized Grunsky coefficients are defined in this paper for all locally 
univalent meromorphic functions in any domain in the complete complex plane. 
Various explicit formulas for these coefficients are established. Necessary 
conditions for univalence are obtained in arbitrary domains and in the unit disc 
in particular. The first one generalizes Grunsky inequalities and the second one 
is an extension of the Nehari-Schwarzian derivative condition. 

Introduction 

For a sequence of complex numbers a = {a. }~=z and an integer 1, we formally 

denote 

a ( w ) '  = a . w "  = A k . , ( a ) w  k = A~. , (al ,  a2 . . . .  )w  k. 
k = l  k = l  

The coefficients Ak . , ( a )  are the so-called Bell polynomials (cf. Comtet  [5] 

chapter 5.4). Hummel  [9] and Todorov [12] found explicit formulas for Grunsky 

coefficients of a function F ( t )  E ~ in terms of Bell polynomials of the sequence 

a , =  f("'(0) w h e r e f ( z l = F ( 1 / z ) - ' ,  n > l .  
n! = 

The purpose of this paper  is to study a generalization (due to Aharonov [3]) of 

Grunsky coefficients, derive their explicit formulas in terms of Bell polynomials 

of some sequences and deduce necessary conditions for univalence generalizing 

Grunsky inequalities to arbitrary domains on the one hand and the Schwarzian 

derivative condition in the unit disc on the other  band. These results are derived 
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in the last two sections. In order to obtain these results we start with a brief 

review on some elementary properties of Bell polynomials and then derive 

explicit formulas for Aharonov invariants and for another sequence of in- 

variants. In particular two formulas for Bernoulli numbers are derived in the 

second section. 

1 .  B e l l  p o l y n o m i a l s  

Most of the results in this section are known, but for the sake of completeness 

we briefly sketch proofs for some of them. 

EXAMPLE 1. 

one gets 

(1.1) 

Using the expansion 

[ ( l _ w ) o + l l ' = ~ ( k + a l - 1  = k - 1  wk '  a > O  

({( Y )  akl  n + a  = - -  

• n - 1  . = t  k - I  ' 

e.g., 

and 

Ak.,(1, 1 . . . .  ) =  ( ~ - - ~ )  (for a = O) 

Ak,(1,2 . . . .  ) = { k + l - l ~ /  (for a =1).  
• \ k - l /  

EXAMPLE 2. 

we deduce that 

(1.2) 

LEMMA A. 

and [12]): 

(1.3) 

Taking a.  = 1/(n  - 1)!, a ( w )  = we w and 

m k _ r  a 
a ( w ) "  = wine "w = w k 

k=. 0 i - m ) !  

o o  

• ( k  - m ) ! "  

For  a na tura l  n u m b e r  I an  expl ici t  f o r m u l a  for  A~ j  ( a )  is (see [5] 

E Vl v 2 vs ~--- l!  a l a 2  . . .  or,, k > l = 0 ,  
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the sum taken over all the nonnegative v, 's  satisfying 

V l  + V2 + " " " + v~ = l ,  

so that in particular s < k - I + 1. 

EXAMPLE 3. 

(1.4) 

LEMMA B. 

(1.5) 

v ~ + 2 v e + " ' + s v ,  = k 

and of weight k: 

(1.6) 

Ak . . (a )=ak ,  Ak . k (a )=a~ ,  

Ak +,.k ( a ) = ka ~-Ia2, 

Ak+2.k(a)=(2k) k-2 2 ( ~ ) k - I  Otj 0~2+ O/i O~3. 

(i) Bell polynomials Akj (a ) are homogeneous of degree 1: 

Ak.i (tat, ta2,. . .)  = t'Ak., (al, a2 . . . .  ) 

Ak., (ta,, t2a2 . . . .  ) = tkAk., (a, a2 . . . .  ). 

(ii) Bell polynomials of a sequence {a.}:=~ = a satisfy 

k - m  

(1.7) A u ( a ) =  ~ Ak-. .m(a)A.. ,  re(a), k >=l, - o o <  m <o% 
n = l - - r n  

in particular, for m = 1 we have 

k - I + l  

(1.7') Ak. t (a )= ~'~ a.Ak-. . i- t(a).  
n = l  

We also have 

k - I + l  

(1.8) - k A u ( a ) =  ~?~ na.Ak_..,_,(a), l eO.  
l n = !  

(iii) Applying (1.7) to Example 1 one gets 

) (7) (  ) (1.9) ~,  a + n  k n a + k + l  l>= ~0.  
. = o  n = k - 1 ' k > -  1 ,  a 

349 

(1.10) Ak.,(c~---/3)= ~ (__1) ~-m ~ A~.,. (a )A~_~j_m (/3 ). 
m ~ O  n = t n  

LEMMA C. For any pair of sequences a = {a. },/3 = {/3. }, the binomial formula 

yields (see [5] Section 3.3) 
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In particular if a = {0, a2, a3 . . . .  }, /3 = {a , ,0 ,0  . . . .  } then 

(1.11) Ak.t (al ,  a2 , . . . )  = ~=0 Ak-u-~ (a2, a3 . . . .  )a~ 

and conversely 

(1.11') Ak., (a2, a3 . . . .  ) = ( -  1) ' -"  Ak . . . .  (a , ,  a :  . . . .  ) a ,  . 
rn = | )  

EXAMPLE 4. Bernoull i  numbers  B~ -~) of order  - 1  =< 0 are defined by 

~ B~ -I) w k + l  ' (e w - 1 ) '  = k=o- -~ ,  l-->-0" 

Applying (1.11') to Example  2 we obtain 

B(-t) ( 1 ) ~ ( m / ) m  k k-, = Ak, 1 , ~ ,  = ( -  1) ' -"  
(k - l)! . . . .  m=o 

LEMMA D. Let to = a(w) = E:=, a,w", [3(to) = ET=, [3,to" 
[3(a(w)) = E~=, y.w". Then 

k 

(1.12/ Ak,, (y )  = ~ Ak.. (alAn., ([31, 
n = l  

and v ( w )  = 

and in particular 

k 

(1.13) yk = Ak.,(T) = ~ Ak.n (a)[3. ([3o = 0, Ak.o(a) = 8k.o). 

Every  analytic function [(z) in a domain  D C C defines a sequence  ct~ = 

f(")(z)/n!, n>=l, z ~ D ,  so that a ( w ) = f ( z + w ) - f ( z ) ,  and we have the 
corresponding Bell polynomials  

( Ak.,(f ,z)= A~.,(a)= A~., f '(z) . . . . . .  

L e m m a  D may be reformula ted  for that sequence:  

LEMMA D'. Let ~ = f ( z )  be analytic in D and g(~) in f(D). Then 
Jabot insky [10]): 

k 

(1.12') A~., (g" f, z)  = ~ Ak.. (/, z)A.., (g, f(z)). 
n = /  

(cf. 

In particular we get Faa'-di-Bruno's formula ([5] Section 3.4) 



Vol. 57, 1987 GRUNSKY COEFFICIENTS 351 

1 k 

(1.13') k--!. (g" f)Ck~(Z) = ~ Ak,, (f, Z) g(")(f(z)) 
.=o n! 

The following lemma has been proven by Jabotinsky in the case that z = 0, but 

its generalization is straightforward. 

LEMMA E. 

(1.14) 
n 

A,., (g, ~') = 7 A-n-, (f, z), 

where g = f - '  near ~ = f ( z ) .  

Finally we need a formula for Bell polynomials of negative degrees: 

LEMMA F. Suppose al # O. For 1 > 0 we have 

Let f be analytic and univalent near z, i.e., f ' ( z ) ~ O .  Then 

l>=n, l~O 

k (l+ 
(1.15) Ak_,_,(a)  = ~ (--1)" 

n = 0  

PROOF. Since we have 

we deduce 

n -  1~" _~_. ~, A~.o(~,a~ .. . .  ). / n 

w l o I  W = Oll "{- O~n+l wn = A k  ,, , 

n = I k = 0  

1 a~ ( ~ / t (g./)'~(O) 
A k - l , - i ( a ) = k I d w  k a~+ a~+lw" = k! 

n = I / w = 0  

f(w)= ~ a°+,w °, 

where 

n = t  

Thus (1.13') implies (1.15). 

2. Aharonov invariants 

For a sequence a = {a,}~ let 

(2.1) 

and 

g(~o) = (a, + o~) -~. 

1+ a,w n = 1 -  q*k (a)w ~ . 
n = l  k = l  

(2.2) 

Q.E.D. 
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(Notice that 

(2.3) 

In part icular if f(z) is analytic and univalent near  z, let 

/'"+"(z) 
a .  = (n + 1) ! f ' (z )  

and 

i.e., 

Ak (a) = Ak ([, z), = z ) ,  

(2.1') ( ~ ft"+~)(z) ) iogf(Z+w)-f (z)  ~,Ak(f,z)w k 
log 1 +  . (n+l)!f,(z)W" = wf'(z) =k=, 

and 

['(z) 1 _ ~ ~b.÷,(f, z)w" (d .  A h a r o n o v  [2]). 
(2.2') f(z +w) - f ( z )  w .=o 

LEMMA 1. (i) For a sequence a = {a.}T we have 

(2.4) Ak(a) ~ ( - 1 ) " - '  = (a), 
n = l  n 

k 

(2.5) 'kk ( a )  = ~ ( - 1)"-'Ak.. (a) .  
n = l  

(ii) If f(z) is analytic with f'(z) ~ O, then 

(2.4') ak(f,z)= ~ ( - 1 ) " - 1  ( k )  , _. .=i n f (z) Ak .... (f,z) 

and 

(2.53 .~, + f'(z)-"Ak+~. (f, z). 

PROOF. Formulas  (2.4) and (2.5) follow by applying (1.13) to to = a(w)= 
E~=l a ,w",  with 

/3(to) Iog(l+to)= ~ (-1)"-' to £ (-1)"-'to", = .=, n to" or / 3 ( t o ) = l + t o =  = ' 

respectively.  Identit ies (1.5), (1.11') and (1.9) then yield (2.4') and (2.5') as 



Vol.  57, 1987 G R U N S K Y  C O E F F I C I E N T S  353 

follows: 

Ak([,Z)= ~ (--1)m-' Ak,. [["(Z) ['"(z) ) 
,.=1 m " \ 2 f ' ( z ) ' 3 ! f ' ( z )  . . . .  

( - 1 ) ' - '  ~ _  1),.-° (n  m) ( f , ( z ) , [ ' ( 2 ~ ) )  =,.~1 m f ' (z)-" .=, ( Ak÷ . . . . . . .  f ' (z)  m-" 

=°~, n f ' ( Z ) - ° A E  . . . .  ( f , z ) , . = .  n - - 1  

. =1 n f ' ( z  )-"Ak .... (/, z ), 

and 

( ; r )  g,~(f,z)= ( -  1)m-'Ak.m f, ,.:, f' '3! . . . .  

n--I , - - n  

r l = l  m = n  

,=, + 1 f (z)- Ak .... ([, Z). O.E.D. 

EXAMPLE 5. Let f ( z ) =  e z. Then 

log ( [ ( z + w ) - [ ( z ) ' ~ = l o g  ~ - ~ ) =  ~ A~(e~,z)w k 
wf'(z)  / ~:, 

and 

['(z) 1 = 1 1 _ ~k(eZ, z)w k-l, 
f ( z + w ) - f ( z )  w eW-1  w k~,z'*' 

i.e., Ak (e Z, z) and ~k (e Z, z) are independent of z. Moreover, by the definition of 
Bernoulli numbers Bk we now have 

e w 

e w - 1  
[ eWw'] 1 d l o g - -  = kAk(e : ,z)w ~-t 

w dw ~=, 

= 1 - ~  m 
e w - 1  

1 1 ~ BE Wk-1 =1-- ~k(e ~,z)w k-'= + ~ • 
W k=l  k=l  K 1  

Thus, from (2.4') and (2.5') we deduce explicit formulas for Bernoulli numbers 
(cf. [61): 
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1 + B,  = A , ( e  ~, z )  = A~., ~ .  

(2.6) Bk k k,Ak(eZ,  z)  ~ k ( - 1 ) " - t ( k )  = . = /:/(-m) 
m = l  ~'~ a t Jk  

or 

k / k + l \  ~_,.~ 
Bk= -k!4Jk(e~,z)=,.=,Z ( - - 1 ) " ~ m + l ) B k  , 

REMARK. Aharonov has already shown that (see [2]): 

(2.7) d:k (g " f, z ) = tkk (f, z ), k >= 2 

for every MSbius transformation g. Similarly one can show that: 

(2.7') Ak (h .  f, z) = At (f, z), k >= 1 

for every affine mapping h ( z ) =  az + b, a#O. 

3. Generalized Grunsky coefficients 

For a given sequence a = {a.}T let 

(3.1) l o g ( l _  t~_  a(sr)) = _ ~ F , ( a ; t )  ~.,, 
n = l  n 

Then by (2.1), (2.4) and 

F . ( a ; t ) =  

k__>2 

where 

(3.2) 

k = l .  

= a .C .  
n = l  

(1.10) 

- n A .  ( -  t - a l ,  - a 2 ,  - o~ 3 . . . .  ) 

~ ( - 1 ) k k A . . k ( - t - a , , - a 2  . . . .  ) 
k = l  

-~ A. - .~k-m ( Ot )t  m 
k ~ l  m ~ O  

t t/ 

- n A .  ( - a )  = ~, -~ A..k (ct)  
k = !  

F..,. ( a )  = 
n ~ ( k - 1 ) A , _ , ~ _ , . ( a )  

mk=~. m - 1  

Isr. J. Math 

for m = O, 

for n ->_ m > O. 
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The polynomials F, (a ; t) are Faber polynomials associated with the sequence a. 

Gunsky coefficients bk., (a)  are defined by the generating function 

&(~)-&(o))  = 
- ~ bk..(a)w-k~ -" (3.3) log ~ - m k..=. 

where &(z)  = z - za(z-1) ,  which yields at once 

LEMMA 2. (i) bk. . (a)= b..k(a). 

(ii) bk.. (a)  = bk,. (a2, a3 . . . .  ) are independent of at ,  

(iii) Formulas  (3.1) a n d  (3.3) imply  

(3.4) F. a ;  = bk..(a)m k. 
k = l  

For example, if F ( z ) = z + ~ . : = l b . z - "  is analytic in I z l > l ,  its ordinary 

Grunsky coefficients are exactly Grunsky coefficients associated with the 

sequence a .  = - b.. 

For a given sequence a = {a,}7 we have 

nbk..(a) = ~ F.,, .(a)Ck.,.(a) 
m = o  

LEMMA 3. 

(3.5) 

where 

(3.6) 

PROOF. 

I = 0  

Evaluate the left-hand side of (3.4) as follows: 

F, a ;  = F,.,, (a)o)-"  (1 - a (o~))" 
rn  = t )  

= 2 
m = o  I = - m  

where, by (1.13'), 

C, . . . .  Ca)= k--~.--~-~rk (1 - a ( ~ ) ) "  I~=.= ~ ( - l )  ' Ak.,(a), 
I = 0  

and thus 

F. a ;  = , 

r r l = 0  I = - m  I = l  

t = - n k  

k>_m 
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Comparing this to the right-hand side of (3.4), (3.5) immediately follows. 

Q.E.D. 

REMARK. From the proof it also follows that 

(3.7) ~ F,.,,(a)C_k.,.(a)=&,, O<=k<=n. 
m=k 

For example, by formula (3.2) we have: 

F,.~(a) = 1, F,. ,_,(a) = ha,, 

F , . . _ _ , ( a )  = h a 2  + 2 

F..._3(a)= na~ + n(n - 2)a,a2 + (3 ) a). 

Also, 

Thus, 

Ck,,,(a) = 0 (for k > 0), 

G . , ( , ~ )  = - ~ . , .  

k + l  

Ck.2(a) = --2ak+2+ ~ a.ak-.+> 
~ t = l  

(3.8) bk. , (a)=--ak+,  and bk.z(a)=--ak+2+~ a.ak-.+z. 
n = 2  

Now let f ( z )  be an analytic function in a domain D C C  and z ~ D \ { o 0 }  

Grunsky coefficients of f at z are defined by means of the generating function 

(3.9) log f(z + ~:)- f(z + to) = _ ~ b~. ([, z)~'% ". 
~ - -  to k,n = 0  ' 

In particular, for to = 0 we get, by (2.1'), 

log [(z + ~) - f ( z )  = _ ~ bk.,,(f, z)¢ k 

= log f ( z ) +  ~: n~(f, z)~ ~, 
k=l 

i.e., 
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/ -- | o g f ' ( z )  for  k = 0, 

(3. 1 0) bk.,,(f, ) Z 
I 
l - Ak (L z) for k => 1. 

Hence, 

log f ( z  + ~) - f ( z  + to) _ log f ( z  + (,) - f ( z  ) _ log [(z + oJ) - [(z ) _ log f ' (z  ) 
~ - , o  ~f '(z) ,,,f'(z) 

(3.11) = l o g { [ f ( z f , ( z ) _ f , ( z  ) ] / t ~ - ' -  oj-')} 
+~)-f(z) f ( z  + , o ) - f ( z ) J / "  

= - ~, b~.. q, z )~ ,o  ". 
k,n=l 

But since we have by (2.2') 

f ' ( z )  = l___ ~,  q , . ( f , z ) w . _ , = 5 ~ ( w _ , ) = l - a ( w  ) 
f ( z + w ) - f ( z )  w .=,  w 

it appears that Grunsky coefficients of f at z are exactly Grunsky coefficients of 
the sequence {~b. (f, z)}~=,. Hence, 

LEMMA 2'. (i) bk.. (f, Z) = b..k (f, Z). 
(ii) For all k, n >= 1, bk.. (f, z)  = bk.. (qJ2, q,3 . . . .  ) are independent of qt,(f, z)  and 

therefore by (2.7) 

(3.12) bk.. (g" f, Z) = bk.. (f, z) for all M6bius transformations g. 

(iii) If F. (f, z ; t) is Faber polynomial of degree n for the sequence {qs. (f. z)}7, =~, 
then 

(3.4') F .  

THEOREM l. Let f be analytic at z. 
(i) For n >= 1 we have 

1 # t _ l  v r e + l - 1  v,,+,~j,z)  (3.13) bm,([,z)  
• - n , ~ ,  m ( n  - 1 ) !  

(ii) If F . ( f , z ; t ) =  Y,.=,,F..,.(f,z)t", then 

A m.-.(f , f (z)) ,  O<=m<-n, 
r m (3.14) f (z) /:...t (f, z) = 

t ( n / m ) A . . m ( f , z ) ,  l<=m<-_n, 

and 
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(3.15) t l ~ Ak-,.(f,z)A-,.-.(f-',f(z)), m = l  

bk.. (f, z )  = 
1 

m Ak.-,. (f, z)A,,,,,, (f, z).  
m = l  

PROOF. 

b... .( [ ,z)= 

(i) According to formulas  (3.9) and (2.2'), we have for n => 1, m ~ 0: 

1 a "+" f ( z + r . ) - f ( z + o J ) l  
m!n!a(,"&o'l°g ( z + ~ ) - ( z + t o )  ~=,~=o 

1 o"+"-' / f'(O 1 } 
- m ! n !  , 9 r , " - ' c 9 ~ "  [ f ( ~ ' ) - f ( ~ )  ~'--co , . . . .  

- m!n!O~"- '  k= ,(k(k-m • I I ~ = z  

1"~ 0 "-~ 1 * _ 1)k_,. {~k(f,~)(~__Z)k-m-,}} 

°+ ( m )  
1 ~ (_ l ) j ,_ , , ,  k 1 ~b~" . . . .  k , q , z )  

= n  k=,,,+, (m + n - k)l " 

(ii) Evaluat ing the left-hand side of (3.4') we get 

f,(z) 
F~ (f, z; f( z + c , ) - f ( z )]  

= ~ F,.,~ (f, z)f'(z)m (f(z + ~ ) -  f(z))-" 
m =l} 

m = | }  I=--ra  
A,.-..(f,z),l+~A,.-,.(f,z), '} 

I=1  

= f,z)F..m(f,z)f'(z)" ~' 
I = - - n  

Compar ing  it to the right-hand side of (3.4') we conclude 

(3.16) A-k- . , ( f ,  z)F.., .(f,  z ) f ' ( z )"  = &.., 
m = k  

O<__k<-_n, 

and 

A~_,.(f,z)F.,.~(f,z)f'(z)" = nbk..(f,z), 
r n = l  

(3.17) k _-> 1. 
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But by (1.12') we have 

A_k_,,(f, z )A  , ,_ , ( f - ' , f (z))  = A-k . .  (f-'" f, z) = 3k.,. 
r n = k  

Thus (3.16) with (1.14) yield (3.14), and (3.14) with (3.17) and (1.14) imply (3.15). 

Q.E.D. 

COROLLARY 1. (i) By (3.10) and (3.13) we have 

1 ~ ~O~-')(f' z)  _->1 
A k ( f ' z ) = - b ' " k ( f ' z l = - k m = , ( - 1 ) " - '  ( k - m ) !  ' k (3.18) 

and 

(3.19) ~b.+,(f, z) = - b , , . ( f , z ) = ~ ( - 1 )  H l ~ + ; ' ' ( f ' z )  k > l .  
,=, n ( n - l ) !  ' = 

(ii) Comparing (3.13) for n = 2: 

b,..2(/, z ) m 2 1 ~b,. +2(f, = - -  z )-~#,~+,(f; ' z )  

with (3.8), one gets (cf. [1] formula 2.5(d)): 

(m + 3)Om.2(f, z) = qJ'+,(f, z )+ ~ qJ. (f, z)6,~ .+2(f, z). 
n = 2  

Next we generalize the transformation formula (2.4') of [7]: 

THEOREM 2. Let g(z) = (az + b)/(cz + d), ad - bc = 1. Then 

b,...(f'g,z)= ~ ~ [ m - l ~ [ n  11) , = , k = , \ l - l ] \ k -  ( -  c)"+"- ' -kg'(z) '  . . . .  ,+k,,2h t ,  -,,k ~s, g ( z  )), 

(3.20) 
m,n>=l. 

PROOF. Denote 

• t(z, K) = log f ( z ) - f ( K )  
z - ~  

Then for every M6bius transformation one gets 

~r~ (z, ~) -- ~r (g(z), g(C)) + ~log g ' ( z )  + Yog g'(~). 

Hence, by formula (3.9) we may write 

b.,,,(f.g,z)- 1 3 '~+" • re!n! c9¢"&o " q)t(g(6")'g(w))]c . . . . . .  re'n>=1" 
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Now use Fa~i-di-Bruno's formula (1.13') and the identity 

- -  C )  k - n  

a k . , ( g , z ) = ( k  n 11) (c(z+ d)k+. 

(see [7]), and (3.20) follows. 

COROLLARY 2. If f is univalent in the unit disc U, then 

(3.21) (1-1zl2)'÷"lb,,.~(f,z)l<=q,,-,(Izl)q,-,(Izl),  I z [ < l  

where 

for g(z )= az + b cz + d ' ad - bc = l 

Q.E.D. 

qk(x)= V k =  1+1 ' 
I =0 

and if f has a I-~-quasiconformal extension to C, then 

(3.21') (1-[zl2)m÷"[b,,.,(f,z)[<=q,,_dlz[)qn_,(lz[)[ll~[l~, I z ] < l .  

This corollary is a generalization of Theorem 1 in [7], and the proof is 
identical, using (3.20) and the Grunsky inequality 

] b,.,. (f, 0) 1 =< 1/X/mn (or [I P, I1~/Vmn, respectively). 

Since inequality (3.21) will be improved in the next section, we omit details of its 
proof. 

4. Grunsky inequalities, generalization and consequences 

THEOREM 3. Let f be a univalent meromorphic function in a domain D of any 
connectivity. Then 

I (4.1) k d(z, 3D) b~,,(f,z)h. < z E D  
k = l  n = l  ~ = k 

for all sequences {,L} of complex numbers for which the right-hand side of (4.1) 
converges. If f has a I.~-quasiconformal extension to C, the right-hand side of (4.1) 
is multiplied by II ~ IlL < 1. 

PROOF. According to formula (3.11), bk.,(f,z) are the ordinary Grunsky 
coefficients of the univalent function 

( 1 )  f ' (z)  _ r _ ~ b , ( f , z ) , _ . + , ,  [ , l>  d(z, OD)_," 
F z;-~ = f ( z + ~ - ' ) - f ( z ) -  : 
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Thus (4.1) is just the classical Grunsky inequality for F(z ; 1/~) (see the proof in 
[11]). Q.E.D. 

In particular, if An = &~,, for some m ->_ 1, then 

COROLLARY 3. I f  f is univalent in D (with a i.~-quasiconformal extension to 
C), then for every z E D" 

(4.2) ~ kd(z, OD)2~"*k~lbk.,,(f,z)12<= l/m ( <=lilxll~/m, respectively). 
k = l  

Note that for m = 1, (4.2) becomes the area inequality (cf. [2], [7] and [8]): 

(4.2') ~ kd(z, OO)2~k**~l Ok**(f, z)lZ~ 1 (<_--Ilgt II~, respectively). 
k = l  

Aharonov has already studied the generalized Grunsky coefficients bk.n (/, z) 
(see [3]), and discovered sharp upper  bounds for b,., (f, z) for functions in the 
class S. Here a more explicit form of his result is established and generalized for 
all bk.. (f, z) of all univalent meromorphic  functions in the unit disc U. 

THEOREM 4. Let f(z) be univalent meromorphic in U. Then 

(1-1zl2)"+"lbr~.,(f,z)l<=(P~-'(lzl2)P"-'(lz]2)) "z I z 1 < 1 ,  m,n>=l, 
\ m . n  ' 

(4.3) 

where 

(4.4) 

and 

(4.5) 

x, pk(x) = k + l ~ ( k ~  x' = (k + l )  
1 } \1 }  ,= , ,  k - l + l  

(4.6) 

e.g., 

max pk(x )=pk(1 )=(2k ;  1 ) .  
0"~  x _~ I 

The proof of Theorem 4 depends on the following lemma. 

LEMMA 4. The polynomials pk (X), defined in (4.4), satisfy 

.=k k k - 1  = Ixl<l, 

1 ~ n(n_l)2x,_2= l + 2 x  
~ : ,  nx"-' = (1 - x )  -2 ,  ~ ° : 2  (1 - x )  4 . . . . .  
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PROOF. 

Then  

Deno t e  

Ok(X) k ' ( k - 1 ) ' 2 ( k ) ( k - l l )  .-k . X 

n = k  

f x r < l .  

Qk(X)=-~X ~ Qk-,(X) , k = 2 , 3  . . . .  

f rom which it follows by induction on k that 

(4.6*) Qk(x)  = k ! (k  --1)!(1-- X)-'-kp*k-,(X), k = 2 , 3  . . . .  

where  {p~(x)}?, are polynomials  satisfying the recursion formula 

k(k  + 1)p*(x)  = x(1 - x)2p*'-'t(x) + (1 - x)(1 + (4k - l)x)p*'-t(x) 
(4.7) 

+ 2 k ( 1  + 2kx)p*_~(x) 

and since O k ( 0 ) =  k ! ( k -  1)!, p*_,(0)= 1, it readily follows that 

p~'(0) = k(k + O. 

Fur ther  differentiat ions of (4.7) yield at x = 0: 

k(k  + l)p~m(0) 

" - * " + ' " 0 '  + 2((2l + 1)k - l'-)pk'_",(O)+ l(2k - l + 1)- 'p~]"(0) ,  l _--- 1 = ( l + l ) P k - t  ~ s 

and this implies by induct ion 

1 ( k +  1 ) ( ~ )  O N  l < k, l~ p-m(0)  = I ' = 

i.e., p * ( x ) = p k ( X )  is the polynomial  given in (4.4). If we set x = 1 at (4.7), 

identi ty (4.5) follows at once.  Q .E .D.  

PROOF OF THEOREM 4. By L e m m a  2'(ii) we may assume, without  loss of 

generali ty,  that f ( z ) =  z + a2z2 + . . .  E S. Then  

i'(o) = f(~)_,. V(0; ~) = f ( ~ ) _  f(0) 

Hence ,  the generat ing funct ion of bk,. (f, O)= bk.. is 

= - bk,.6 to = Bk (f, if)to k 
- -  0 . ~ -  k , n = l  k = l  
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where 

G R U N S K Y  COEFFICIENTS 

Bk (f, r)  = ~ bk,. (/, 0)5". 
n = l  
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Using Grunsky inequalities Aharonov deduced (see [3]) 

(4.8) k:,~kfB~"'(f'~)12=~kk=, : ( m - - n ) !  b~~"C"-"2<--O°(l¢l~)' I ~ l < l  

where Ok (x) is given in the proof of Lemma 4. Now, by the Cauchy-Schwarz 
inequality it follows that 

] o"+" P(~,w) I k ~ ( k  k' ~) k-,. ---m )! O~"Oto" = B~"'(f, ] 

< { k~,, k! ( k -  1)' I ' / z l ~  },/2 
= ( k - m ) !  (k-m)! Itol2~-2", tk=, kIB~"'(f'~)]2 

<= O., (I o~12)"2O. (I co l2) ',~. 

(4.9). 

Next, by formula (3.9) we have for rn, n _-> 1 and I z [ < 1" 

orn+n I 
- m' n'b,. .(f ,  z) = @"Oto" I°g/(~ ' ) - / ( to)  

• " " ~ - -  ~ ~ ' = ~ = z  

-aCato----  log r( -1 - ~ to J~ . . . .  

~m+n 
- p ( ~ ,  to)]~ O~"&o" 

Thus inequality (4.9) implies 

Ibm. , ( f , z ) l< Qm(Izl2)"2Q,([zl2) ''= 
rn!n! 

This, with Lemma 4, completes the proof• 

REMARK• Inequality (4•3) improves (3.21), since we have 

,=,, l m - l -  _ \ l / v-m--c---l} =q"-'(x)2 

Q.E.D. 

In particular (4.3) implies an improvement on Theorem 1 of [7]. 

COROLLARY 4. If f(Z) is univalent meromorphic in the unit disc U, then 
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(4.10) 

n=>2• [ z [< l  

and 

(1-Iz  12) 2" [b . . . ( f , z ) l  = ( 1 - I z  [2)2" I ~"~ ( -  1)'( n + l -  1)@<."+-/'(f,z) 
t=, l (n - l)! 

(4.11) _< ~ n 1 Izl 2k 
- k ~ o  n - k 

< 1  / 2 n - - l ' ~  \ n  1 ]  > = - -  n = 1 ,  lzl<l. 
n 

As Aharonov has already pointed out, (4.11) is sharp, and equality is attained by 
the Koebe function f ( z )  = z(1 - z) -2. 
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