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ABSTRACT

The generalized Grunsky coefficients are defined in this paper for ail locally
univalent meromorphic functions in any domain in the complete complex plane.
Various explicit formulas for these coefficients are established. Necessary
conditions for univalence are obtained in arbitrary domains and in the unit disc
in particular. The first one generalizes Grunsky inequalities and the second one
is an extension of the Nehari-Schwarzian derivative condition.

Introduction

For a sequence of complex numbers « = {a,}>_ and an integer I, we formally
denote

3 i o o
a(w) = ("Z:l a,.w") = ‘Zl A (@)w* = kzl Avi(ar, as, .. )Wk

The coefficients A, (a) are the so-called Bell polynomials (cf. Comtet [5]
chapter 5.4). Hummel [9] and Todorov [12] found explicit formulas for Grunsky
coefficients of a function F(t) € X in terms of Bell polynomials of the sequence

(n)
a, =Ln£'9) where f(z)=F(1/z)", nzl.

The purpose of this paper is to study a generalization (due to Aharonov [3]) of
Grunsky coefficients, derive their explicit formulas in terms of Bell polynomials
of some sequences and deduce necessary conditions for univalence generalizing
Grunsky inequalities to arbitrary domains on the one hand and the Schwarzian
derivative condition in the unit disc on the other hand. These results are derived
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in the last two sections. In order to obtain these results we start with a brief
review on some elementary properties of Bell polynomials and then derive
explicit formulas for Aharonov invariants and for another sequence of in-
variants. In particular two formulas for Bernoulli numbers are derived in the
second section.

1. Bell polynomials

Most of the results in this section are known, but for the sake of completeness
we briefly sketch proofs for some of them.

ExaMpLE 1. Using the expansion

w ' &fk+al—-1
[(1 )]=2( k-1 )Wk’ a=0

one gets
. a8,
e.g.,

Au,1,..)= (’;:11) (for a = 0)
and

Au(l,2,.. )= (";f,) (for a =1).

ExampLE 2. Taking a, =1/(n —1)!, a(w)=we" and

a(w)m = 2 (k m)!
we deduce that

1 w (el =w

LemMma A. For a natural number | an explicit formula for A, (a) is (see [5]
and [12]):

(1.3) Aula)= 2————ai‘a?...a?, kz1=0,

V]’ Vz Vs!
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the sum taken over all the nonnegative v,’s satisfying
ntntotu =L nF2ntetsp =k

so that in particular s =k ~ 1 +1.

ExAMPLE 3.
Ak.l(a)-_‘ak, Ak,k (a)=a,l(’
(14) Ak+l.k (a)= ka‘:—laﬂ,

Acn(a)= (;) a)Cai+ ({() at a.

LemMma B. (i) Bell polynomials A, ,(a) are homogeneous of degree I:
(1.9) Aui(tay, tan, .. )=t'A(ay, as,...)
and of weight k:
(1.6) Aty Poa, .. )=t"Au (o, o, . . ).

(i) Bell polynomials of a sequence {a,}.- = a satisfy

k—m
(17)  Au@)= 2 Acam(@Aum(a), k=l —o<m<o;

n={-m

in particular, for m =1 we have

k—i+1
(1-7') Ak.l(a)= Zl anAk‘n.l—l(a)-
We also have
k k—{+1
(1.8) 7 Auile)= 2 naAcn-(e),  1#0.

(i) Applying (1.7) to Example 1 one gets

P, _
(1.9) E(“")("l"):(“:f‘jl), k=1=z1, az0.

n=0 n

Lemma C. For any pair of sequences a = {a,}, B ={B.}, the binomial formula
yields (see [5] Section 3.3)

110 Aue=s)= X = (1) S A @Ac8)

m=( n=m
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In particular if @ ={0, a, as,...}, B ={,,0,0,...} then

(1.11) Ac(ay, a,..)= 2

m=

c
P

l
m ) A pimm (02, a3, . )a T
and conversely
‘ !
(1.11) Ag(as, as,...)= 2_0 (— 1)l—m (m ) Avorm (@1, @, .. -)ai—m-

ExampLE 4. Bernoulli numbers B{” of order —1 =0 are defined by

(e”—1) = [=0.

o« B(k—[)
' wk+l

Applying (1.11") to Example 2 we obtain

ety Az = 5 00 ()

LemMAa D. Let w=a(w)=37_aw", B(w)=37_,B0" and y(w)=
Bla(w))=Z=5_, y.w". Then

(1.12) AU =3, A (@A (B),

and in particular

(1.13) yk=Ak..(y)=§)Ak.n(a)Bn (Bo=0, Aco() = 8,y).

Every analytic function f(z) in a domain D CC defines a sequence a, =
f"(z)/In!, n=1, z€D, so that a(w)=f(z+w)—f(z), and we have the
corresponding Bell polynomials

Aulf,z)=Aula)= Akl(f(z) M—) ,) .
Lemma D may be reformulated for that sequence:

LemMma D', Let { =f(z) be analytic in D and g({) in f(D). Then (cf.
Jabotinsky [10]):

(1.12) Aulg f2)= 2{ Awn(f, 2)Ani (g f(2)).

In particular we get Faa’-di-Bruno’s formula ([5] Section 3.4)
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k (n)
(1.13) % (8- f)(z)= 20 Aun(f, Z)%ﬂ!ﬂ) :

The following lemma has been proven by Jabotinsky in the case that z =0, but
its generalization is straightforward.

LemMma E. Let f be analytic and univalent near z, i.e., f'(z)#0. Then

(1.14) A (g 0) ='7‘ A(fz), I=zn 1#£0

where g = f~' near { = f(2).
Finally we need a formula for Bell polynomials of negative degrees:

Lemma F.  Suppose a, #0. For | >0 we have

(1.15) Aci(a)= 2( 1y (”" 1) @i A (an s, ).

PrOOE. Since we have

wa(w)' = (a'+§1 QAW ) Z A (a)wh,

k=0

we deduce
1 d* z A NG
A (a)= Fdwk (011‘*';l Ay W )W=U=£g-—£k2!—L)
where
fo0)= 3 amw’s  g@)=(a+o)"
Thus (1.13") implies (1.15). Q.E.D.

2. Aharonov invariants

For a sequence a ={a,}7 let

@.1) log (1+§la,.w) i A, (a)w"

and

22) (1 +3 a,,w")—l =1- S g (a)w"
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(Notice that

2.3) log( 2 (a)w) Z]Ak(a)w").

In particular if f(z) is analytic and univalent near z, let

_ (),
RENCESVIZE)
and
A(a)=Afz), ()=t (f, 2),
ie.,
, f(z) _ zZ+w)—f(z) <

2.1y  log (1+2(n+1)'f(z) ) ogﬁ_W(ZL)ﬁ_) Z: (f, 2)w*
and

2.2) ?(2—4_%%—%= 2 Uonlf, z)w" (cf. Aharonov [2]).

n

LeMMA 1. (i) For a sequence o ={a,}7 we have

@.4) A= 30 4, (@),
@s) @)= 3, (~ 17 Ay ).
(i) If f(z) is analytic with f'(z)#0, then
@.4) A= 3 E (K peyra. o)
and
23) w = 30 () e A 6 2)

Proor. Formulas (2.4) and (2.5) follow by applying (1.13) to @ = a(w) =
2o a.w", with

B@)=togi+w)= 5 LU0 or Blo) =7 = 3 (— 1"

n=1

respectively. Identities (1.5), (1.11') and (1.9) then yield (2.4') and (2.5') as
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follows:

(= 1y "2) 'z
A= 2 g_mL A (2%(—:1) ’ 3!f’(z)"">

= 3 C0 payn $ -1y (M) A (. L2, Y ey
- ZK——Lf(z)-"AHM (f,2) 2 (,,_1)

- 2 ﬁ“—:‘LI (::) F(2) " Arennlf 2),

and

wif2)= 3 (-1 A (Q,Lf— 4 )

=2 -y Z(—D"""(T) Avenn(f, 2)f ()"

=S e A ) 2 (7)

=3 (A ) rer A QED.

ExampLE 5. Let f(z)=e”. Then

log (ﬁ%—)) =log (

) 2 (€7, 2)w*
and

f(z) 1_ 1 1< -
Ferw) JG) w o o1 w= W ow

i.e., Ac(e’, z) and ¢ (e’ z) are independent of z. Moreover, by the definition of
Bernoulli numbers B, we now have

e 1 d[ e —1]=2kAk(ez,z)Wk—l
w Py

1 - B, ..
=l+ﬁ——_l—zlf}k(8 Z)Wk] Zk_ wh

Thus, from (2.4) and (2.5") we deduce explicit formulas for Bernoulli numbers

(cf. [6]):
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1+ B, = A, 2) = Ay, ({L} )=Bi=4
k

m—l

k
(26) { B.=k-k!Ac(e*2) =§‘,

or

k
Bo= —klhi(e"2)= 3 (~1)" (”;ill)sr'"’, k=1.

REMARK. Aharonov has already shown that (see [2]):

2.7) h(g-f2)=w(f2), k=2
for every Mobius transformation g Similarly one can show that:
2.7) Ac(h-f,2)= Alf, 2), k=1

for every affine mapping h(z)=az +b, a#0.

3. Generalized Grunsky coeflicients

For a given sequence a = {a,}; let

6D logl-k-a@)= -3 BN @)= 5 e

n=1

Then by (2.1), (2.4) and (1.10)

F.(a;t)=—nA,(—t—a, —a, —as,...)

=k2=l(_1)k-£An‘k(_t—al, _az,...)
n k k "
= '; f "‘2:0 (m) An—m,k—m (a)t

= i Fom (a)tm
m=0

where
‘"An(“a)=ifA...k(a) for m =0,
k=
32) F.n(a)=
':: k2m (k 11) An—m.k—m (a) fOI' n ; m >0.
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The polynomials F, («; t) are Faber polynomials associated with the sequence a.
Gunsky coefficients by, («) are defined by the generating function

(33) og HO=2@)__ $ b, @iy
k.n=1
where @(z) =z —za(z™"), which yields at once

LemMa 2. (i) b, (@) = b, ().
(i) bi.(a) = b, (@, as,...) are independent of a,,
(iii) Formulas (3.1) and (3.3) imply

(3.4) F, (01 ; 1::%9)> =0 "+n :Z b (a)o*.

For example, if F(z)=2z+ZX;_,b,z™" is analytic in |z|>1, its ordinary
Grunsky coefficients are exactly Grunsky coefficients associated with the
sequence a, = — b,.

LemMA 3. For a given sequence o = {a,}; we have

65) tbis (@)= 3, Fun (@)Cin (@)
where
(36) Con(@)= 2 (=1 () Acemi ().

Proor. Evaluate the left-hand side of (3.4) as follows:

F (21220 = 3 L (@)o (- alo))”

m={

= 2 F,.,,.(a) 2 Cm (00!

m=

where, by (1.13"),

1 k

Ck-m.m (a) - k!

a@) L= B0 (T) A, kzm

and thus

F(a:222@) S E @] 3 Gui@o'+ 3 Cut@o]

m=0

,2{ ME F,.,,.(a)C,,,.(a)} o' +2 { 2 F,,,,.(a)C,,,,(a)}
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Comparing this to the right-hand side of (3.4), (3.5) immediately follows.
Q.E.D.

REMARK. From the proof it also follows that
3.7 > Fom(@)Cim(@)=8,, Osk=n
m=k

For example, by formula (3.2) we have:

Fn.n(a)=1’ Fn‘n~l(a)=na|,

Fn.n—z(a) = na, + (;) af,

Fn.n—3(a) = nog + n(n _2)a1a2+ (;:) a?.

Also,
Cla)=0 (for k >0),
Ck‘l(a) = T O,
k+1
Ck.Z(a) = —2at Z QO —p +2-
n=1
Thus,
1 k
(3-8) bk.l(a) =~ and bk,z(a) = - Otk+z+§ 22 OO —p+2.

Now let f(z) be an analytic function in a domain DCC and z€E€D \{oo}.
Grunsky coefficients of f at z are defined by means of the generating function

(3.9) log {2+ i) - ’;(Z to)_ éo b (f, 2)0 0"

In particular, for o =0 we get, by (2.1),

log ﬁz_ﬂ{t;ﬁ'z_) =" :Z() bolf, 2)¢*

=log f(z)+ 21 Af, 2)¢5,

ie.,
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—logf'(z) fork=0,
(3.10) beolf, 2) =
—A(f,z) fork=l.

Hence,

0 [EHD=fEt0) | fE+O=1G)_ [Cra)=fC) .
—w 8T i) e opy losf ()

e =log {[f(z +f’§()2)f(z) f(z +fa§; f(Z)]/(( e }

= —k"2=1 bk,,,(f, Z){kw"

But since we have by (2.2")
—M— L ~t alw
fz+w)—f(z) w Z b (fz)w" =a(w)= 4_)

it appears that Grunsky coefficients of f at z are exactly Grunsky coefficients of
the sequence {4, (f, z)}.-.. Hence,

LeMMA 2. (i) b, (f, z2) = boi (f, 2).
(i) Forall k, n =1, b..(f, 2) = be, (2, Y3, . . .) are independent of Y(f, z) and
therefore by (2.7)

(3.12) be.(g:f 2)=b..(f,z) forall Mébius transformations g.

(iii) If F,(f, z;t) is Faber polynomial of degree n for the sequence {¢, (f, 2 )}>-,
then

! ) Z’QZ! _ yn N k -
(34) Fn(faz7f(z+§)_f(z)>_§ +nk2=l bk.n(f,Z)gy n=1.

THEOREM 1. Let f be analytic at z.
(1) For n=1 we have

(3.13) bua (1, 2) =1 22 (~ 1)(m+,,£ )%,A_,L).Z')

(i) If F.(f,z;t) = Zmo Fum (f, 2)1™, then

Amaf ' f(z), O=m=n,
(3.14) f'(z)"Fom(f. 2)=
(n/m)Aum(f.2), 1=m=n,

and
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(3.15) % 2} Aiem(f, ) Acmn (f f(2)),
bea(f, 2)=

S L A (. 2)An (i 2).

m=1
ProoF. (i) According to formulas (3.9) and (2.2'), we haveforn =1, m 2 0:

___1 [+~ f(z+w)
b (£, 2) = m!n!ag"aw"k’g (z+-(z+w)

__ 1 am+n-l { f'({) B 1 }
mini o0 60" \(f(Q) - f(w) {-w

{=w=0

{=w=12

1 FL x k—1) k—m—1
LR (k=) TG )
—nk=m+l( l) (m )(m+n_k)!.

(ii) Evaluating the left-hand side of (3.4") we get
)
R e )
= 3 Fun (b @G + = @)™

= $ R f @ | S A+ 5 A8

-3 {3 AGobatarer) s

-n m=—

313 At ORGP CY) 4

Comparing it to the right-hand side of (3.4') we conclude
(3.16) S A nlf,2)Fmlf, 2)f(2)" =8 O0=k=n,
m=k

and

G173 Acali D Df @) =nbu(f2), kZL
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But by (1.12') we have

3 At DA @)= AL (7 ) =b

Thus (3.16) with (1.14) yield (3.14), and (3.14) with (3.17) and (1.14) imply (3.15).
Q.E.D.
CoroLLARY 1. (i) By (3.10) and (3.13) we have

K (k—m)
618 A= -bu(n=7 3 TR e

and

n (n—-1)
(3.19) ¢M<f,z)=—bl‘"(f,z)=;(*1)'-*;’%§lﬁ)§), k=1,

(ii) Comparing (3.13) for n =2:

buaf, 2) = P alf, 2) bl 2)

with (3.8), one gets (cf. [1] formula 2.5(d)):

(1 + 3, 2) = s, ) 3, b, 2Dl 2),

Next we generalize the transformation formula (2.4') of [7]:

THEOREM 2. Let g(z)={(az +b)/(cz+d), ad —bc =1. Then

b 5.2)= 3 3 (T2 (B 1) (Ceym oty e, 1 g2,

2
(3.20) mnz=l1,

Proor. Denote

@ (2. )=log {EIZLE).

Then for every Mobius transformation one gets
Dy (2, ) = P (g(2), g(§)) +:log g'(2) +1log g'({).

Hence, by formula (3.9) we may write

am+n

1
b (f - 8 2) = 5 G50 D18, 8@ oo, mn 1.
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Now use Faa-di-Bruno’s formula (1.13") and the identity

_({k=1\ (=) _az+b _
Ak.n(g,z)_(n_l)(cz+d)k+n for g(z)_cz+d’ ad —bc =1
(see [7]), and (3.20) follows. Q.E.D.

CoroLLARY 2. If f is univalent in the unit disc U, then

(3.21) A=z b (f, )| = gui( 2 Dgu-i( 2], 12]<1

where

K !
w= 3 (1)
and if f has a p-quasiconformal extension to C, then
G21) A= |z[Y"" [bma(f, )= gu-il| 2 Ngu-i(l 2 Dl |1, [2]<1.
This corollary is a generalization of Theorem 1 in [7], and the proof is

identical, using (3.20) and the Grunsky inequality

|bwn (£,0)|=1/Vmn (o | |./V mn, respectively).

Since inequality (3.21) will be improved in the next section, we omit details of its
proof.

4. Grunsky inequalities, generalization and consequences
THeOREM 3. Let f be a univalent meromorphic function in a domain D of any
connectivity. Then

= x 2 =< 2
@.1) S k| d(z,aD) by (f, 2)A| = J)‘—,:L z€D
k=1 n=1 k=1

for all sequences {A.} of complex numbers for which the right-hand side of (4.1)
converges. If f has a p-quasiconformal extension to C, the right-hand side of (4.1)
is multiplied by ||p | <1.

Proor. According to formula (3.11), b..(f,z) are the ordinary Grunsky
coefficients of the univalent function

3

Do f@ . ;
Floi}) =iy = - S ™", 121> d(z oDy
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Thus (4.1) is just the classical Grunsky inequality for F(z;1/{) (see the proof in
[11]). Q.E.D.

In particular, if A, = §,.. for some m =1, then

CorOLLARY 3. If f is univalent in D (with a p-quasiconformal extension to
C), then for every z € D:

(42) D kd(z, DY b (f, z)f=1/m (=| p|/m, respectively).
k=1
Note that for m = 1, (4.2) becomes the area inequality (cf. [2], [7] and [8]):
4.2) > kd(z, IDY* O, 2)F =1 (=|p |, respectively).
k=t

Aharonov has already studied the generalized Grunsky coefficients by . (f, z)
(see [3]), and discovered sharp upper bounds for b,.(f, z) for functions in the
class S. Here a more explicit form of his result is established and generalized for
all b, (f, z) of all univalent meromorphic functions in the unit disc U.

THEOREM 4. Let f(z) be univalent meromorphic in U. Then

43) (1—lzlz)"””lbm.n(f,z)\é(p"‘"ﬂzlz)p""'(lz|2)>”2, 1z]<1, mnz1,

m-+n
where
& (k1 (k) . *(k)l x'
(4.4) pk(x)—l=“( 1 )(l)x —(k+1),§=; 1) TS
and
(4.5) max p,(x)=p.(1)= <2kk+ 1) :

The proof of Theorem 4 depends on the following lemma.

LemMmA 4.  The polynomials p.(x), defined in (4.4), satisfy
@6 > (")(” - 1) =1 -x)Fpdx), k=1, |x|<1,
n=k k k - 1

eg.,

o

1+4+2x
(1_‘x)4,... .

S n—1 __ _ —2 l
;nx =(1-x)% 5

n(n—1yx"2 =
2

n=
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Proor. Denote

ok(x)=k!(k—1)!;(g)(z:})x"-k, Ix]<1.

Then
aw=2xLo.w]. Kk-23..
from which it follows by induction on k that
4.6%) Qu(x)=k!'(k —1)'(1 - x)*p&(x), k=23 ...
where {p%(x)}s are polynomials satisfying the recursion formula
k(k +1Dpi(x)=x(1-xypdix)+ 1 —x)(1+ @k — Dx)pe (x)
“7) +2k(1+2kx)pE.(x)
and since Q, (0)=k!(k —1)!, p*.(0)=1, it readily follows that
pi'(0)=k(k +1).

Further differentiations of (4.7) yield at x =0:
k(k +1)px(0)

=+ DpF O+ 2R+ Dk = P)pr0) + 12k — 1 +1yp°(0), 1=1

and this implies by induction

boro-( (). osres

i.e., pr(x)=p.(x) is the polynomial given in (4.4). If we set x =1 at (4.7),
identity (4.5) follows at once. Q.E.D.

PrOOF OF THEOREM 4. By Lemma 2'(ii) we may assume, without loss of
generality, that f(z)=z +a,z’+---€S. Then

2 O B
F 0; “\ — ..z f ) = (&),

TR TR

Hence, the generating function of by, (f,0)= by, is

P(Lw) = mgi@—ﬂ—L =S boite" =S Bo(f, Dot

k.n=1 k=1
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where

B.O= 3 b (0"

Using Grunsky inequalities Aharonov deduced (see [3])

x

@8 S KIBPGOF= 3k

éon(lglz), 1{]<1

2: n)' bimg™™

where Q,(x) is given in the proof of Lemma 4. Now, by the Cauchy-Schwarz
inequality it follows that

a;':;"m P, w)‘ l 2 (k B(")(f "™
4o {2t !m)! &= opl " S ke or)

§ Qm (‘ w ‘2)1/2()'I (| @ |2)l/2'

Next, by formula (3.9) we have for m,n=1 and |z|<1:

—m!n!b,.(f,z)= 3;’;&:"’ log f(i?———{u(w) {mw=z

9" Ji(ON —f( )" L(_) ]
ag"aw [log e +log +log s

_ am+n
- aé«nawm P(g’w)

{=w=2z-

Thus inequality (4.9) implies
[ 12)!/20 (IZ IZ 12

m!n!

(b (f, 2)| =2
This, with Lemma 4, completes the proof. Q.E.D.

ReMARK. Inequality (4.3) improves (3.21), since we have

L= (" (S (") ) gy

1=0 m—1 l

In particular (4.3) implies an improvement on Theorem 1 of [7].

CoroLLARY 4. If f(2) is univalent meromorphic in the unit disc U, then
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(1=12P) [4n(f. 2)] = :(n—z)z _ng_)

k n—k-—1
4.10)
2

1 n—3
é\/n—l(n—Z)’ nz2, |z|<1

and

(=120 b )] = (=2 Py | 3 -1y (") T L

n—1 n—1)2 ZZk
<<
@ =5 (") 2
g%(z:_"ll), nz1, lz]<1,

As Aharonov has already pointed out, (4.11) is sharp, and equality is attained by
the Koebe function f(z)=z(1—-2z)7.
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